Functional equations and the Cauchy mean value theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cauchy Mean Theorem

The purpose of this paper was to prove formally, using the Mizar language, Arithmetic Mean/Geometric Mean theorem known maybe better under the name of AM-GM inequality or Cauchy mean theorem. It states that the arithmetic mean of a list of a non-negative real numbers is greater than or equal to the geometric mean of the same list. The formalization was tempting for at least two reasons: one of ...

متن کامل

Cauchy's Mean Theorem and the Cauchy-Schwarz Inequality

This document presents the mechanised proofs of two popular theorems attributed to Augustin Louis Cauchy Cauchy’s Mean Theorem and the Cauchy-Schwarz Inequality.

متن کامل

On Cauchy-type functional equations

LetG be a Hausdorff topological locally compact group. LetM(G) denote the Banach algebra of all complex and bounded measures on G. For all integers n ≥ 1 and all μ ∈ M(G), we consider the functional equations ∫ G f(xty)dμ(t) = ∑n i=1gi(x)hi(y), x,y ∈ G, where the functions f , {gi}, {hi}: G → C to be determined are bounded and continuous functions on G. We show how the solutions of these equati...

متن کامل

The Mean Value Theorem and Its Consequences

The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...

متن کامل

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2016

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-015-0395-6